Model 3708 8-Channel Preamp and Scanner FOR ULTRA-LOW NOISE RESISTANCE MEASUREMENTS

For many years, the Linear Research Model LR-700 AC resistance bridge had been revered as the industry standard for ultra-low noise AC resistance measurements. Since Linear Research ceased operations in 2005, there had not been a commercially available instrument able to parallel the realworld, low noise measurement performance of the Model LR-700.

Lake Shore obtained the remaining stock of field-effect transistors (FETs) used in the Model LR-700 that were selected for their unique, low-voltage noise characteristics. These FETs enabled us to develop the Model 3708 8-channel preamp and scanner. When combined with the exclusive design attributes of our Model 372 AC resistance bridge, the Model 3708 offers an exceptionally low voltage noise floor specification of just 2 nV_{RMS}/\sqrt{Hz} . This is equivalent to the low noise measurement performance previously only available with the Model LR-700.

How Good is the Model 3708 Preamp and Scanner?

The noise specification across a single FET used in the Model 3708 preamp and scanner is $0.62 \text{ nV}_{\text{RMS}}/\sqrt{\text{Hz}}$. Sixteen of these FETs, along with additional instrument circuitry, contribute to the overall instrument voltage noise floor performance. The practical measure of voltage noise is given by the resolution of the instrument, which is a function of the specified resistance range and excitation level.

The following table compares the Model LR-700 directly with the Model 372/3708 as each is observed using a digital readout or computer interface. The Model LR-700 specifications were compiled using mid-scale, room temperature resistors and a 10 second filter, while the Model 372/3708 specifications were compiled using an 18 second filter. The Model 372/3708 specifications were, however, normalized to 10 second filtering by multiplying the 18 second noise figure by $\sqrt{(18/10)}$, or 1.34.

Comparison of Linear Research LR-700 and Lake Shore Model 372/3708 instrument specifications for measurements performed under equivalent conditions

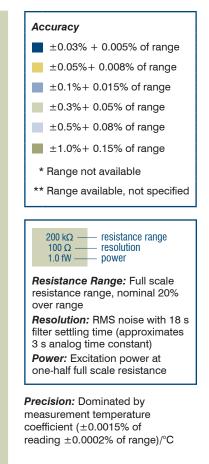
Resistance	Linear Researc	h Model LR-700	Lake Shore Model 372/3708		
range (Ω)	Resolution	Excitation	Resolution	Excitation	
0.002	10 nΩ	30 µV	10 nΩ	30 µV	
0.02	100 nΩ	300 µV	54 nΩ	300 µV	
0.2	1 μΩ	300 µV	540 nΩ	300 μV	
2	10 <i>μ</i> Ω	300 µV	5.4 μΩ	300 µV	
20	100 μΩ	300 µV	54 $\mu\Omega$	300 µV	
200	1 mΩ	10 mV	270 μΩ	3 mV	
2,000	10 mΩ	10 mV	2.7 mΩ	3 mV	
20,000	100 mΩ	10 mV	27 mΩ	3 mV	
200,000	1 Ω	10 mV	540 mΩ	3 mV	
2,000,000	10 Ω	10 mV	7.3 Ω	3 mV	

Which Lake Shore Scanner is Best for Your Particular Requirements?

At Lake Shore, we are committed to offering instrumentation optimized for your particular needs. As such, we offer two different scanner options for use with the Model 372 AC resistance bridge, each customized for particular measurement requirements. These are the Model 3708 and the Model 3726. The scanners allow the single channel Model 372 to multiplex up to either 8 or 16 channels. Beyond these common features, the scanners are differentiated

by their respective input voltage noise and DC bias current. Ultra-low resistance measurement applications that demand the very best in low noise performance require the **Model 3708** preamp and scanner. At just 2 nV_{RMS}/\sqrt{Hz} , the Model 3708 offers the lowest input voltage noise. However, it is not recommended for ultralow temperature measurements. These measurements require very low DC bias current to prevent measurement errors as a result of self heating. At just 4 pA, the **Model 3726** scanner offers exceptionally low DC bias current. It is designed to provide femtowatt excitation levels, so it is the best choice for applications below 50 mK. The higher input voltage noise floor of 10 nV_{RMS}/ \sqrt{Hz} is not optimal for AC resistance measurements, but is a surmountable factor for sub-Kelvin measurement applications.

Scanner comparison


	Model 3708	Model 3726		
Noise	$2 \text{ nV}_{\text{RMS}}/\sqrt{\text{Hz}}$	10 nV _{RMS} / \sqrt{Hz}		
DC bias current	55 pA + 1% l _{EXC}	4 pA + 1% I _{EXC}		
Channels	8	16		

Ordering Information

Part number	Description
372N	AC resistance bridge and temperature controller
372S	AC resistance bridge with 3726 scanner and standard 3 m (10 ft) connection cable
372S-6	AC resistance bridge with 3726 scanner and standard 6 m (20 ft) connection cable
372S-10	AC resistance bridge with 3726 scanner and standard 10 m (33 ft) connection cable
372U	AC resistance bridge with 3708 scanner and standard 3 m (10 ft) connection cable
372U-6	AC resistance bridge with 3708 scanner and standard 6 m (20 ft) connection cable
372U-10	AC resistance bridge with 3708 scanner and standard 10 m (33 ft) connection cable
3726	16-channel scanner with standard 3 m (10 ft) connection cable (Model 372 only)
3726-6	16-channel scanner with 6 m (20 ft) connection cable (Model 372 only)
3726-10	16-channel scanner with 10 m (33 ft) connection cable (Model 372 only)
3708	Ultra-low resistance 8-channel scanner with standard 3 m (10 ft) connection cable
3708-6	Ultra-low resistance 8-channel scanner with 6 m (20 ft) connection cable
3708-10	Ultra-low resistance 8-channel scanner with 10 m (33 ft) connection cable

Model 3708 Performance Specification Table

	Voltage Range								
	6.32 mV	2.0 mV	632 µV	200 µV	63.2 μV	20 µV	6.32 μV	2.0 μV	
31.6 mA	200 mΩ	63.2 mΩ	20 mΩ	6.32 mΩ	2.0 mΩ	632 μΩ	200 μΩ	20 μΩ	
	200 nΩ	63 nΩ	40 nΩ	13 nΩ	10 nΩ	10 nΩ	10 nΩ	10 nΩ	
	100 μW	32 μW	10 μW	3.2 μW	1.0 μW	320 nW	100 nW	32 nW	
10 mA	632 mΩ	200 mΩ	63.2 mΩ	20 mΩ	6.32 mΩ	2.0 mΩ	632 μΩ	200 μΩ	
	630 nΩ	200 nΩ	130 nΩ	40 nΩ	32 nΩ	322 nΩ	32 nΩ	32 nΩ	
	32 μW	10 μW	3.2 μW	1.0 μW	320 nW	100 nW	32 nW	10 nW	
3.16 mA	2.0 Ω	632 mΩ	200 mΩ	63.2 mΩ	20 mΩ	6.32 mΩ	2.0 mΩ	632 μΩ	
	2.0 μΩ	630 nΩ	400 nΩ	130 nΩ	100 nΩ	100 nΩ	100 nΩ	100 nΩ	
	10 μW	3.2 μW	1.0 μW	320 nW	100 nW	32 nW	10 nW	3.2 nW	
1 mA	6.32 Ω	2.0 Ω	632 mΩ	200 mΩ	63.2 mΩ	20 mΩ	6.32 mΩ	2.0 mΩ	
	6.3 μΩ	2.0 μΩ	1.3 μΩ	400 nΩ	320 nΩ	320 nΩ	320 nΩ	320 nΩ	
	3.2 μW	1.0 μW	320 nW	100 nW	32 nW	10 nW	3.2 nW	1.0 nW	
316 <i>µ</i> A	20 Ω	6.32 Ω	2.0 Ω	632 mΩ	200 mΩ	63.2 mΩ	20 mΩ	6.32 mΩ	
	20 μΩ	6.3 μΩ	4.0 μΩ	1.3 μΩ	1.0 μΩ	1.0 μΩ	1.0 μΩ	1.0 μΩ	
	1.0 μW	320 nW	100 nW	32 nW	10 nW	3.2 nW	1.0 nW	320 pW	
100 <i>µ</i> A	63.2 Ω	20 Ω	6.32 Ω	2.0 Ω	632 mΩ	200 mΩ	63.2 mΩ	20 mΩ	
	63 μΩ	20 μΩ	13 μΩ	4.0 μΩ	3.2 μΩ	3.2 μΩ	3.2 mΩ	3.2 μΩ	
	320 nW	100 nW	32 nW	10 nW	3.2 nW	1.0 nW	320 pW	100 pW	
31.6 <i>µ</i> A	200 Ω	63.2 Ω	20 Ω	6.32 Ω	2.0 Ω	632 mΩ	200 mΩ	63.2 mΩ	
	200 μΩ	63 μΩ	40 μΩ	13 μΩ	10 μΩ	10 μΩ	10 μΩ	10 μΩ	
	100 nW	32 nW	10 nW	3.2 nW	1.0 nW	320 pW	100 pW	32 pW	
10 µA	632 Ω	200 Ω	63.2 Ω	20 Ω	6.32 Ω	2.0 Ω	632 mΩ	200 mΩ	
	630 μΩ	200 μΩ	130 μΩ	40 μΩ	32 μΩ	32 μΩ	32 μΩ	32 μΩ	
	32 nW	10 nW	3.2 nW	1.0 nW	320 pW	100 pW	32 pW	10 pW	
3.16 <i>µ</i> A	2.0 kΩ	632 Ω	200 Ω	63.2 Ω	20 Ω	6.32 Ω	2.0 Ω	632 mΩ	
	2.0 mΩ	630 μΩ	400 μΩ	130 μΩ	100 μΩ	100 μΩ	100 μΩ	100 μΩ	
	10 nW	3.2 nW	1.0 nW	320 pW	100 pW	32 pW	10 pW	3.2 pW	
1.0 <i>µ</i> A	6.32 kΩ	2.0 kΩ	632 Ω	200 Ω	63.2 Ω	20 Ω	6.32 Ω	2.0 Ω	
	6.3 mΩ	2.0 mΩ	1.3 mΩ	400 μΩ	320 μΩ	320 μΩ	320 μΩ	320 μΩ	
	3.2 nW	1.0 nW	320 pW	100 pW	32 pW	10 pW	3.2 pW	1.0 pW	
316 nA	20 kΩ	6.32 kΩ	2.0 kΩ	632 Ω	200 Ω	63.2 Ω	20 Ω	6.32 Ω	
	20 mΩ	6.3 mΩ	4.0 mΩ	1.3 mΩ	1.0 mΩ	1.0 mΩ	1.0 mΩ	1.0 mΩ	
	1.0 nW	320 pW	100 pW	32 pW	10 pW	3.2 pW	1.0 pW	320 fW	
100 nA	63.2 kΩ	20 kΩ	6.32 kΩ	2.0 kΩ	632 Ω	200 Ω	63.2 Ω	20 Ω	
	63 mΩ	40 mΩ	13 mΩ	6.0 mΩ	3.2 mΩ	3.2 mΩ	3.2 mΩ	3.2 mΩ	
	320 pW	100 pW	32 pW	10 pW	3.2 pW	1.0 pW	320 fW	100 fW	
31.6 nA	200 kΩ	63.2 kΩ	20 kΩ	6.32 kΩ	2.0 kΩ	632 Ω	200 Ω	63.2 Ω	
	400 mΩ	130 mΩ	60 mΩ	20 mΩ	20 mΩ	10 mΩ	10 mΩ	10 mΩ	
	100 pW	32 pW	10 pW	3.2 pW	1.0 pW	320 fW	100 fW	32 fW	
10 nA	632 kΩ	200 kΩ	63.2 kΩ	20 kΩ	6.32 kΩ	2.0 kΩ	632 Ω	200 Ω	
	1.9 Ω	600 mΩ	200 mΩ	200 mΩ	63 mΩ	63 mΩ	32 Ω	32 mΩ	
	32 pW	10 pW	3.2 pW	1.0 pW	320 fW	100 fW	32 fW	10 fW	
3.16 nA	2.0 MΩ	632 kΩ	200 kΩ	63.2 kΩ	20 kΩ	6.32 kΩ	2.0 kΩ	632 Ω	
	6.0 Ω	2.0 Ω	2.0 Ω	630 mΩ	600 mΩ	200 mΩ	200 mΩ	100 mΩ	
	10 pW	3.2 pW	1.0 pW	320 fW	100 fW	32 fW	10 fW	3.2 fW	
1.0 nA	6.32 MΩ	2.0 MΩ	632 kΩ	200 kΩ	63.2 kΩ	20 kΩ	6.32 kΩ	2.0 kΩ	
	**	20 Ω	6.3 Ω	6.0 Ω	3.2 Ω	2.0 Ω	630 mΩ	1.0 Ω	
	3.2 pW	1.0 pW	320 fW	100 fW	32 fW	10 fW	3.2 fW	1.0 fW	
316 pA	*	6.32 MΩ	2.0 MΩ	632 kΩ	200 kΩ	63.2 kΩ	20 kΩ	6.32 kΩ	
	*	**	60 Ω	19 Ω	20 Ω	6.3 Ω	3.0 Ω	3.2 Ω	
	*	320 fW	100 fW	32 fW	10 fW	3.2 fW	1.0 fW	320 aW	
100 pA	*	*	6.32 MΩ **	2.0 MΩ 200 Ω	632 kΩ 63 Ω	200 kΩ 60 Ω	63.2 kΩ 32 Ω	20 kΩ 20 Ω	
100 pA	*	*	32 fW	10 fW	3.2 fW	1.0 fW	320 aW	100 aW	
31.6 pA	*	*	*	6.32 MΩ **	2.0 MΩ 600 Ω	632 kΩ 190 Ω	200 kΩ 200 Ω	63.2 kΩ 63 Ω	
01.0 hV	*	*	*	3.2 fW	1.0 fW	320 aW	100 aW	32 aW	
10 pA	*	*	*	*	6.32 MΩ **	2.0 MΩ 2.0 kΩ	632 kΩ 630 Ω	200 kΩ 600 Ω	
	*	*	*	*	320 aW	100 aW	32 aW	10 aW	
3.16 pA	*	*	*	*	*	6.32 MΩ	2.0 MΩ	632 kΩ	
	*	*	*	*	*	**	6.0 kΩ	1.9 kΩ	
	*	*	*	*	*	32 aW	10 aW	3.2 aW	

Lake Shore Cryotronics, Inc. 575 McCorkle Boulevard Westerville, OH 43082 USA Tel 614-891-2244 Fax 614-818-1600 e-mail info@lakeshore.com www.lakeshore.com

Established in 1968, Lake Shore Cryotronics, Inc. is an international leader in developing innovative measurement and control solutions. Founded by Dr. John M. Swartz, a former professor of electrical engineering at the Ohio State University, and his brother David, Lake Shore produces equipment for the measurement of cryogenic temperatures, magnetic fields, and the characterization of the physical properties of materials in temperature and magnetic environments.

